Expression pattern of drought stress marker genes in soybean roots under two water deficit systems

نویسندگان

  • Anna Cristina Neves-Borges
  • Fábia Guimarães-Dias
  • Fernanda Cruz
  • Rosilene Oliveira Mesquita
  • Alexandre Lima Nepomuceno
  • Eduardo Romano
  • Marcelo Ehlers Loureiro
  • Maria de Fátima Grossi-de-Sá
  • Márcio Alves-Ferreira
چکیده

The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively), submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae) cultivar MG/BR46 (Conquista) under two water deficit induction systems

Drought cause serious yield losses in soybean (Glycine max), roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista) and characterize their expression levels during water deficit. Soybean plants gro...

متن کامل

Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes

Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silic...

متن کامل

Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit

Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractiv...

متن کامل

Expression of some stress-responsive genes in tomato plants treated with ABA and sulfonamide compounds. Leila Zeinali Yedegari1 and Nayer Mohammadkhani2*

Drought causes an increase in some gene expression in plant tissues such as plasma membrane intrinsic proteins type 1 (PIP1), 9-cis-epoxycarotenoid dioxygenase (NCED) SlAREB1. The effects of exogenous abscisic acid (ABA) and two sulfonamide compounds, namely, sulfacetamide (Sa) and sulfasalazine (SS) were studied on gene expression of tomato (Lycopersicon esculentum Mill. Cv. Super chief) under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2012